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Estimating the Jacobian matrix of a nonlinear dynamical system through observed time-series data is one of
the important steps in predicting future states of the time series. The Jacobian matrix is estimated using local
information about divergences of nearby trajectories. Although the basic algorithm for estimating the Jacobian
matrix generally works well, it often fails for short or noisy data series. In this paper, we proposed a scheme
to effectively use near-neighbor information for more accurate estimation of the Jacobian matrix using the
bootstrap resampling method. Then, to confirm the validity of the proposed method, we applied it to a
mathematical model and several real time series. As a result, we confirmed that the proposed method greatly
improves nonlinear predictability, not only for noise-corrupted mathematical models but also for real time
series.
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I. INTRODUCTION

To predict complex time series, several methods have
been proposed, such as the Lorenz method of analogs �1�, the
Jacobian-matrix estimate prediction �2–5�, triangulation �6�,
radial basis functions �7,8�, and so on. If we use these pre-
diction methods efficiently, it might be possible to predict
real time series, such as vowel signals �9�, the number of
infectious disease patients �6�, pulse waves �10�, and other
complex phenomena, more accurately. Then, it is inevitable
to involve nonlinear prediction, even though its algorithms
become more complicated, because such real time series are
often generated by nonlinear dynamical systems.

Most nonlinear predictions are classified into global �7,8�
or local methods �1–4,6,11�. In this paper, we focus on the
Jacobian estimate prediction �2,3,5�, which is categorized in
a local linear prediction method. In such methods, it is im-
portant to utilize the local information of a predicted point as
efficiently as possible. If an observed time series is short or is
disturbed by noise, the reliability of local information be-
comes poor. In these cases, the estimated Jacobian matrices
are unreliable, and it is almost impossible to achieve higher
predictability.

To solve the issue, we applied a bootstrap method �12� to
effectively use near-neighbor trajectories for constructing lo-
cal linear predictors. In statistics, there are several studies for
evaluating model parameters by the bootstrap method
�13,14�. Unlike these approaches, we simply apply a boot-
strap resampling scheme to select good near-neighbor infor-
mation when we predict nonlinear, complex, possibly chaotic
behavior. This method is useful for statistically producing a
wide variety of near neighbors as new local information for
precisely approximating Jacobian matrices in order to realize
higher nonlinear prediction accuracy.

To confirm the validity of the proposed method, first we
applied our method to the Ikeda map �15� as a mathematical
model. The results show that the proposed method exhibits
better predictability than conventional algorithms, and the
proposed method is also effective in the cases of predicting
short or noisy time series. Next, we applied the proposed

method to analyze the nonlinearity of several real time-series
data including the Japanese vowel /a/ �9�, the number of
measles patients �6�, and the number of chickenpox patients
�6�. As a result, we find that the proposed method is more
effective for prediction as the prediction step gets larger.

This paper is organized as follows. In the next section, the
conventional local linear prediction methods are reviewed.
Section III introduces several problems of conventional pre-
diction approaches, and we propose a different prediction
method based on the bootstrap method �12�. Section IV
shows the simulation results of applying the proposed
method to several time-series data, and then Sec. V discusses
the validity of the proposed method using the results of the
simulations. Section VI concludes this paper.

II. LOCAL LINEAR PREDICTION METHODS

A. The Jacobian-matrix estimate prediction

1. Estimation of the Jacobian matrix

Let us consider a nonlinear dynamical system

x�t + 1� = F„x�t�… , �1�

where F is a d-dimensional nonlinear map and x�t� is a
d-dimensional state at time t. To estimate the Jacobian matrix
of F �2,5�, we linearize Eq. �1� as follows:

�x�t + 1� = J„x�t�…�x�t� , �2�

where J(x�t�) is the Jacobian matrix at x�t�, and �x�t� is a
very small displacement vector from x�t�. To evaluate J(x�t�)
with only information about x�t�, first, we extract a near-
neighbor set of x�t�. Let us denote the ith near neighbor of
x�t� as x�tki

�, where i=1,2 , . . . ,M. Here, M is the total num-
ber of near neighbors. After a temporal evolution, x�t� and
x�tki

� evolve into x�t+1� and x�tki
+1�, respectively. Then, we

denote the displacement vectors by yi=x�tki
�−x�t� and zi

=x�tki
+1�−x�t+1�. Here, yi corresponds to �x�t�, and zi cor-

responds to �x�t+1� in Eq. �2�. If the norms of yi and zi and
the temporal evolution are small enough, we can approxi-
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mate the relation between zi and yi with the following linear
equation:

zi = G�t�yi,

where the matrix G�t� corresponds to the Jacobian matrix
J(x�t�) in Eq. �2�. Then we estimate G�t� using least-square-
error fitting, which minimizes the average square error S:

S =
1

M
�
i=1

M

�zi − G�t�yi�2.

In other words, we can estimate G�t� using the following
equations:

G�t�W = C , �3�

where W is the variance matrix of yi, and C is the covariance
matrix between yi and zi. If W has an inverse matrix, we can
obtain G�t� from G�t�=CW−1.

2. Prediction based on the Jacobian-matrix estimation

Let us introduce the process of a nonlinear prediction of
x�t� on an attractor from the dynamical system of Eq. �1� �3�.
Our purpose is to predict the s-step future x�t+s� of x�t�.
Because we do not know a future value x�t�, we cannot use
the information about zi, and thus cannot have direct infor-
mation about G�t�. To solve the problem, we use the infor-
mation of the nearest neighbor x�tk0

� of x�t�. Then we calcu-
late a displacement vector

y� = x�t� − x�tk0
� .

Next, we can estimate the Jacobian matrix G�tk0
� at x�tk0

� by
following the process introduced in Sec. II A 1. If we define
x̂�t+1� as the predicted future value of x�t�, we can denote
the predicted displacement vector ẑ�= x̂�t+1�−x�tk0

+1� by

ẑ� = G�tk0
�y�.

Then we can predict x̂�t+1� as follows:

x̂�t + 1� = G�tk0
��x�t� − x�tk0

�� + x�tk0
+ 1� . �4�

The above prediction algorithm first estimates a Jacobian
matrix at each point and then predicts a future value by ap-
proximating the temporal evolution of the local displacement
vector. In other words, the algorithm uses the first-order local
information of the first term in Eq. �4� as well as the zeroth-
order local information of the second term in Eq. �4�. Then,
repeating the above scheme s times iteratively, we can pre-
dict the s-step future of x�t�.

B. The Lorenz method of analogs and its modified prediction
methods

In this paper, to check the validity of the proposed
method, we compare its performance with other local linear
prediction methods, including the Lorenz method of analogs
�1�. First, in this method, we search for the nearest neighbor
x�tk0

� of x�t� on the reconstructed attractor. Then we predict

the s-step future of x�t�, x̂�t+s�, as x�tk0
+s�. This method is

very useful if we treat noiseless data. However, if the data
series length is short or the data are disturbed by noise, this
method does not always work well. To improve the problem,
several modified concepts of the Lorenz method of analogs
have been proposed. These modified concepts use near
neighbors x�tki

� �i=0,1 , . . . ,M�, and make predictions by
calculating the average of temporally evolved neighbors
x�tki

+s� with different weighting strategies. For example, in
Ref. �16�, the future value of x�t� is predicted by

x̂�t + 1� =

�
i=0

M

di
−1x�tki

+ 1�

�
i=0

M

di
−1

, �5�

where di= �x�tki
�−x�t��. On the other hand, Ref. �6� intro-

duces a weighted average using negative exponents of di,
and Eq. �5� is rewritten as

x̂�t + 1� =

�
i=0

M

exp�− di�x�tki
+ 1�

�
i=0

M

exp�− di�

.

III. BOOTSTRAP RESAMPLING METHOD FOR
ESTIMATING RELIABLE JACOBIAN MATRICES

In the conventional Jacobian-matrix estimate prediction
�2,3�, if the number of near neighbors of x�t� is small, it is
difficult to estimate reliable Jacobian matrices. In an actual
time-series analysis, it is often the case that the number of an
observed time series is small. Such undesirable situations
would lead to unreliable estimation. To solve the issue, we
introduced the bootstrap resampling scheme �12� to perform
stable estimation of the Jacobian matrices by increasing the
variety of near-neighbor sets.

The bootstrap method is useful for estimating the charac-
teristics of a population from a small amount of observed
data efficiently. First, we selected near neighbors of x�t� in
the same way as the conventional method. The nearest neigh-
bor of x�t� is denoted by x�tk0

�, and the other neighbors are
denoted by DT= �x�tk1

� ,x�tk2
� , . . . ,x�tkM

��. We performed a
sampling with the replacement of DT to obtain a new set of
near neighbors D1

*= �x1
*�tk1

� ,x1
*�tk2

� , . . . ,x1
*�tkM

��. Then we es-
timated the Jacobian matrix G1

*�tk0
� at x�tk0

� using D1
* as in-

troduced in Sec. II A 1. Finally, we predicted a future point
of x�t� by

x̂1
*�t + 1� = G1

*�tk0
��x�t� − x�tk0

�� + x�tk0
+ 1� .

We repeated such bootstrap estimates B times; namely, the
bth bootstrap-predicted point is described by

x̂b
*�t + 1� = Gb

*�tk0
��x�t� − x�tk0

�� + x�tk0
+ 1� ,

where b=1,2 , . . . ,B. Then we decided the final predicted
point of x�t� by calculating its mean value as follows:
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x̂�t + 1� =
1

B
�
b=1

B

x̂b
*�t + 1� .

If we estimate the Jacobian matrices by the resampling
method described above, it is important not to apply the
above algorithm blindly, because it is possible that the matrix
W in Eq. �3� does not always have an inverse. This case
exists because resampled near neighbors �the bootstrap
samples� can be duplicated or clustered, making the matrix
W not a full rank matrix.

This is one of the most important points we should con-
sider in the present case, because application of the bootstrap
resampling scheme to select good near neighbors and to im-
prove the local linear predictability has different aspects
from the conventional bootstrap method of estimating statis-
tics. Even if we encounter such a case, we neither toss out
the resampled near neighbors nor perform a new resampling,
because the resampled near-neighbor sets with such a trick
would be biased and break the condition that the members of
the resampled set are independently and identically distrib-
uted.

To avoid such an undesirable situation in the present case,
we performed the following procedure.

�1� Applying a diagonalization algorithm to W, we calcu-
lated an orthogonal matrix P and a diagonal matrix �
=diag��i� �i=1, . . . ,d�, where d is the dimension of W and �i

is the ith eigenvalue of W.
�2� The matrices of W, P, and � satisfy the relation W

=P�P−1.
�3� If �i�10−6 for all i, we calculated the inverse matrix

by W−1=P�−1PT, where �−1=diag�1/�i�.

�4� If there exists an index i such that �i�10−6, which
corresponds to the case that W is not of full rank, we calcu-
lated the inverse matrix by

W−1 = P	
1/�1

�

1/�d−k

O

PT,

where k is the number of eigenvalues smaller than 10−6. In
this case, the bootstrap predicted point exists in the
�d-k�-dimensional subspace.

In Sec. IV, we show that the above procedure works well
to calculate the bootstrap-predicted points.

IV. SIMULATION RESULTS OF THE BOOTSTRAP
PREDICTION METHOD

A. Data for simulations and criteria for estimating prediction
accuracy

To confirm the validity of the proposed prediction
method, we prepared several time-series data. First, we use
the Ikeda map �15� as a mathematical model; it is described
as follows:

x�t + 1� = p + b�x�t�cos���t�� − y�t�sin���t��� ,

y�t + 1� = b�x�t�sin���t�� + y�t�cos���t��� ,

��t� = � − �/�1 + x2�t� + y2�t�� ,

where p, b, �, and � are parameters. Generally, it is not easy
to evaluate how the method can be applied to an observed
time series, because it is impossible to obtain explicit infor-
mation on the nonlinearity of the time series. The Ikeda map
is suitable for checking the validity of the proposed method
because it has higher-order nonlinearity even though it is a
two-dimensional dynamical system. In the simulation, the
parameters were set as p=1.0, b=0.9, �=0.4, and �=6.0.
Then, we disturbed both x�t� and y�t� with Gaussian obser-
vational noise.

Moreover, we applied our method to several real time-
series data. The first is the Japanese vowel /a/ �Fig. 1�. This
time series is suitable for benchmark tests because it has
been analyzed and discussed in several studies �9,18–20�.
Then, we applied our method to predict the number of
measles �6� and chickenpox patients �6� �Fig. 2�. Because
these real time-series data are single-variable time series, we
embedded the time series in a d-dimensional state space with
a temporal delay 	 using Takens’ method �17� to perform
nonlinear prediction. For estimating prediction error, we used
the normalized root mean square error �21�

E =
���z�t� − ẑ�t��2



z
, �6�

where 
z is the standard deviation of the time series z�t�, and
ẑ�t� is the predicted time series.
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FIG. 1. �Color online� �a� Time-series data of the Japanese
vowel /a/. The original sampling rate is 48 kHz. The mean value
was subtracted from the original time series. �b� Reconstructed at-
tractor of the Japanese vowel /a/ with d=3 and 	=5.
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Another measure for the improvement of the proposed
method, which combines the Jacobian-matrix estimate pre-
diction and the bootstrap method, is defined by

R =
Ec − Ep

Ec
, �7�

where Ec means the root mean square error of the conven-
tional methods and Ep means that of the proposed method.
The measure estimates the ratio of the improvement between
Ec and Ep. If R becomes a positive value, it means that the
proposed method improves the prediction accuracy.

In this paper, to evaluate Ec and Ep, first we predicted the
last half of time series of z�t� using the first half of z�t� as
learning data �22�. Then we calculated the first improved
ratio, which is described as R1, with Eq. �7�. Next, by chang-
ing the prediction and the learning parts, we predicted the
first half of z�t� using the learning data of the last half of z�t�.
Then we calculated the second improved ratio R2 with
Eq. �7�. We then use the mean value of R1 and R2 as the final
R, which has statistical reliability.

B. Simulation results

1. Comparison of the proposed and several conventional
prediction methods

In Fig. 3, we show the improved ratio R in the case of the
Ikeda map �15�. Figures 4–6 show the results of the Ikeda
map. We compared the proposed Jacobian-matrix estimate
prediction based on the bootstrap resampling method with
four conventional methods introduced in Sec. II: the original

Jacobian-matrix estimate prediction, the Lorenz method of
analogs �1� and its modification �16�, and a weighted average
using negative exponents �6�. In Fig. 3, the horizontal axis
shows the number of time-series data N, and the vertical axis
shows the improvement ratio R defined in Eq. �7�. For simu-
lations, we changed the neighborhood size of x�tk0

� whose
radius is parametrized by the parameter r. Because the pa-
rameter r means the ratio of the radius of the neighbor size to
the global attractor size, the total number of near neighbors
M is different at each point on the attractors. The parameter
of the resampling time B is 200. We use a different dimen-
sion d for each time series. In the case of predicting the Ikeda
map, we use both x�t� and y�t� to construct a state space. In
the case of predicting several real time series as mentioned
below, we show the embedding dimensions d in the captions
of Figs. 7–9 below.

Figure 3 shows the cases of r=1%, 3%, 5%, and 10%,
where the prediction step s is 1. These results show that each
R always becomes positive; namely, it is very effective to
apply the bootstrap resampling for the Jacobian-maxtrix es-
timate prediction. Although the improvement ratios are lower
for the original Jacobian-matrix estimate prediction than the
other conventional methods, such as the Lorenz method of
analogs, the weighted average prediction, or the negative ex-
ponent prediction, the original Jacobian-matrix estimate pre-
diction originally has higher prediction performance than the
other conventional prediction methods. In the next section,
by changing the prediction step s, we examine the perfor-
mance of the proposed method for long-term predictability in
more detail.

2. Performance of the proposed method in the case of large
prediction steps

We compared the prediction accuracy of the original
Jacobian-matrix estimate prediction and the proposed
Jacobian-matrix estimate prediction based on the bootstrap
resampling method from the viewpoint of long-term predict-
ability.

In Figs. 4–6, the horizontal plane shows the near-
neighbor radius r and the prediction step s, and the vertical
axis shows the improved ratio R of Eq. �7�. In Fig. 4, we
applied the proposed method to the Ikeda map whose data
length is N=100, 200, 500, and 1000. Moreover, in Figs. 5
and 6, we applied the proposed method to noisy Ikeda maps
disturbed by Gaussian observational noise. In this paper, the
noise level is quantified by the signal-to-noise ratio �SNR�,
which is calculated by

Rsn = 10 log10

d

2


n
2

where 
d
2 is the variance of the original data and 
n

2 is the
variance of the Gaussian noise.

Next, we applied the proposed method to predict several
real time series: the Japanese vowel /a/ �9�, and the differ-
ence of the number of measles �6� and chickenpox patients
�6�. These results are shown in Figs. 7–9.
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FIG. 2. �Color online� Time-series data of the difference of the
number of �a� measles and �b� chickenpox patients �6�.
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V. DISCUSSION

In Figs. 4–6, these results show that each R is almost
positive, especially in the region of small r, that is, the boot-
strap resampling method works well. On the other hand, in

the region of large r, the improvement ratio R almost equals
0, that is, the root mean square error of the proposed method,
Ep, is almost the same as that of the conventional method,
Ec. The reason is that the estimation accuracy of the Jacobian
matrices has a low prediction accuracy if the near-neighbor
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FIG. 3. �Color online� Improvement ratio R of the proposed prediction based on the bootstrap resampling prediction to several conven-
tional prediction methods: the Jacobian-matrix estimate prediction �solid lines with circles�, the Lorenz method of analogs �dotted lines with
crosses�, the weighted average prediction �dash-dotted lines with triangles�, and the negative exponent prediction �dashed lines with
rectangles�. Predicted data are (x�t� ,y�t�) of the Ikeda map. The near-neighbor radius is set to �a� 1%, �b� 3%, �c� 5%, and �d� 10%, and the
prediction step s is 1.
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FIG. 4. �Color online� Properties of the improvement ratio R to the variables r and s. Improvements by the proposed method are indicated
by closed circles. As the conventional method, we use the original Jacobian-matrix estimate prediction to the Ikeda map. N is the data length.
N= �a� 100, �b� 200, �c� 500, and �d� 1000.
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radius is large, because in such a case the algorithm is not a
local linear prediction. Then, application of the bootstrap
method does not lead to improvement of the accuracy.

Moreover, from Figs. 5 and 6, we can confirm that the
proposed method works well even if the time series is dis-
turbed by large amounts of observational noise. Thus, the
proposed bootstrap resampling method is effective in the
cases where we cannot make r large, such as cases when we
can observe just short time-series data or only noiseless time
series. These cases often occur in real time-series analysis.
Because we can confirm the validity of the proposed method
using a mathematical model, we applied the method to pre-
dict real time-series data.

Figure 7 shows that the proposed method works better in
the region of small r in the case of the Ikeda map. Moreover,
these results show that the improvement ratio R depends on
the embedding dimension d, that is, it is important to select
an optimum embedding dimension. Then we applied our
scheme to the difference of the number of measles and chick-
enpox patient. The results are shown in Figs. 8 and 9. They
show almost the same tendencies as Fig. 7.

From these results, we can confirm that the proposed
method is effective to predict real data as well. However, we
also found that there exists a case that the improvement ratio
R is small as shown in Fig. 5�b�. By researching such cases
in more detail, we could improve the proposed method.
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FIG. 5. �Color online� Properties of the improvement ratio R to the variables of r and s for an Ikeda map that is corrupted by
observational noise with different noise levels: �a� noiseless, and Rsn= �b� 40, �c� 30, and �d� 20 dB. Improvements by the proposed method
are indicated by closed circles. The data length N is fixed at 200.
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FIG. 6. �Color online� Properties of the improvement ratio R to the variables of r and s for the Ikeda map that is corrupted by
observational noise with different noise levels: �a� noiseless and Rsn� �b� 40, �c� 30, and �d� =20 dB. Improvements by the proposed method
are indicated by closed circles. The data length N is fixed at 500.
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VI. CONCLUSIONS

In this paper, we proposed a nonlinear prediction method
combining the conventional local linear prediction algo-
rithms with the bootstrap method �12�. Then, we applied the
proposed method to the Ikeda map �15� and several real time
series �6,9�. As a result, the proposed method is effective
even if the near-neighbor radius is small or the time-series
data are corrupted by large observational noise. That is, the
bootstrap samples can compensate for the lack of local infor-

mation due to small data lengths or observational noise to
estimate an accurate local linear predictor. The proposed pre-
diction method is a powerful tool for nonlinear prediction.

Although we have applied the simple framework of a
bootstrap resampling procedure to build better predictors, the
framework might be a close relation to nonlinear model se-
lection in statistics �24�. It is also an important future task to
discuss the relation not only from a nonlinear dynamical but
also from a statistical point of view. In this study, we im-
proved the nonlinear predictability of local linear prediction
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algorithms. One of the important next steps is to apply the
proposed method to the local nonlinear prediction algorithm
�4�. In addition, one of the possible extensions of the present
framework is to evaluate prediction regions �23�. The appli-
cation of this framework to relatively high-dimensional data
is one of the most important issues in nonlinear time-series
analysis.

Moreover, in this paper, we set the resample time as the
total number of near neighbors M, because we simply fol-
lowed the original resampling scheme of the bootstrap
method �12�. However, it is also important to evaluate the
proposed method with a smaller resample size to reduce the
computational load of the proposed method.
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